Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space.

Identifieur interne : 000539 ( Main/Exploration ); précédent : 000538; suivant : 000540

Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space.

Auteurs : Kerstin Kojer [Allemagne] ; Valentina Peleh [Allemagne] ; Gaetano Calabrese [Allemagne] ; Johannes M. Herrmann [Allemagne] ; Jan Riemer [Allemagne]

Source :

RBID : pubmed:25392302

Descripteurs français

English descriptors

Abstract

The mitochondrial intermembrane space (IMS) harbors an oxidizing machinery that drives import and folding of small cysteine-containing proteins without targeting signals. The main component of this pathway is the oxidoreductase Mia40, which introduces disulfides into its substrates. We recently showed that the IMS glutathione pool is maintained as reducing as that of the cytosol. It thus remained unclear how equilibration of protein disulfides with the IMS glutathione pool is prevented in order to allow oxidation-driven protein import. Here we demonstrate the presence of glutaredoxins in the IMS and show that limiting amounts of these glutaredoxins provide a kinetic barrier to prevent the thermodynamically feasible reduction of Mia40 substrates by the IMS glutathione pool. Moreover, they allow Mia40 to exist in a predominantly oxidized state. Consequently, overexpression of glutaredoxin 2 in the IMS results in a more reduced Mia40 redox state and a delay in oxidative folding and mitochondrial import of different Mia40 substrates. Our findings thus indicate that carefully balanced glutaredoxin amounts in the IMS ensure efficient oxidative folding in the reducing environment of this compartment.

DOI: 10.1091/mbc.E14-10-1422
PubMed: 25392302
PubMed Central: PMC4294668


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space.</title>
<author>
<name sortKey="Kojer, Kerstin" sort="Kojer, Kerstin" uniqKey="Kojer K" first="Kerstin" last="Kojer">Kerstin Kojer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université technique de Kaiserslautern</orgName>
</affiliation>
</author>
<author>
<name sortKey="Peleh, Valentina" sort="Peleh, Valentina" uniqKey="Peleh V" first="Valentina" last="Peleh">Valentina Peleh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université technique de Kaiserslautern</orgName>
</affiliation>
</author>
<author>
<name sortKey="Calabrese, Gaetano" sort="Calabrese, Gaetano" uniqKey="Calabrese G" first="Gaetano" last="Calabrese">Gaetano Calabrese</name>
<affiliation wicri:level="4">
<nlm:affiliation>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université technique de Kaiserslautern</orgName>
</affiliation>
</author>
<author>
<name sortKey="Herrmann, Johannes M" sort="Herrmann, Johannes M" uniqKey="Herrmann J" first="Johannes M" last="Herrmann">Johannes M. Herrmann</name>
<affiliation wicri:level="4">
<nlm:affiliation>Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université technique de Kaiserslautern</orgName>
</affiliation>
</author>
<author>
<name sortKey="Riemer, Jan" sort="Riemer, Jan" uniqKey="Riemer J" first="Jan" last="Riemer">Jan Riemer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany jan.riemer@biologie.uni-kl.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université technique de Kaiserslautern</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25392302</idno>
<idno type="pmid">25392302</idno>
<idno type="doi">10.1091/mbc.E14-10-1422</idno>
<idno type="pmc">PMC4294668</idno>
<idno type="wicri:Area/Main/Corpus">000579</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000579</idno>
<idno type="wicri:Area/Main/Curation">000579</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000579</idno>
<idno type="wicri:Area/Main/Exploration">000579</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space.</title>
<author>
<name sortKey="Kojer, Kerstin" sort="Kojer, Kerstin" uniqKey="Kojer K" first="Kerstin" last="Kojer">Kerstin Kojer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université technique de Kaiserslautern</orgName>
</affiliation>
</author>
<author>
<name sortKey="Peleh, Valentina" sort="Peleh, Valentina" uniqKey="Peleh V" first="Valentina" last="Peleh">Valentina Peleh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université technique de Kaiserslautern</orgName>
</affiliation>
</author>
<author>
<name sortKey="Calabrese, Gaetano" sort="Calabrese, Gaetano" uniqKey="Calabrese G" first="Gaetano" last="Calabrese">Gaetano Calabrese</name>
<affiliation wicri:level="4">
<nlm:affiliation>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université technique de Kaiserslautern</orgName>
</affiliation>
</author>
<author>
<name sortKey="Herrmann, Johannes M" sort="Herrmann, Johannes M" uniqKey="Herrmann J" first="Johannes M" last="Herrmann">Johannes M. Herrmann</name>
<affiliation wicri:level="4">
<nlm:affiliation>Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université technique de Kaiserslautern</orgName>
</affiliation>
</author>
<author>
<name sortKey="Riemer, Jan" sort="Riemer, Jan" uniqKey="Riemer J" first="Jan" last="Riemer">Jan Riemer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany jan.riemer@biologie.uni-kl.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université technique de Kaiserslautern</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cytosol (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Disulfide (metabolism)</term>
<term>Immunoblotting (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Metalloproteases (genetics)</term>
<term>Metalloproteases (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondrial Membrane Transport Proteins (genetics)</term>
<term>Mitochondrial Membrane Transport Proteins (metabolism)</term>
<term>Mitochondrial Membranes (metabolism)</term>
<term>Mitochondrial Proteins (MeSH)</term>
<term>Molecular Chaperones (genetics)</term>
<term>Molecular Chaperones (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chaperons moléculaires (génétique)</term>
<term>Chaperons moléculaires (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Cytosol (métabolisme)</term>
<term>Disulfure de glutathion (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Immunotransfert (MeSH)</term>
<term>Membranes mitochondriales (métabolisme)</term>
<term>Metalloproteases (génétique)</term>
<term>Metalloproteases (métabolisme)</term>
<term>Mitochondries (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de transport de la membrane mitochondriale (génétique)</term>
<term>Protéines de transport de la membrane mitochondriale (métabolisme)</term>
<term>Protéines mitochondriales (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Thiols (métabolisme)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Metalloproteases</term>
<term>Mitochondrial Membrane Transport Proteins</term>
<term>Molecular Chaperones</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Glutarédoxines</term>
<term>Metalloproteases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport de la membrane mitochondriale</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytosol</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Glutathione Disulfide</term>
<term>Metalloproteases</term>
<term>Mitochondria</term>
<term>Mitochondrial Membrane Transport Proteins</term>
<term>Mitochondrial Membranes</term>
<term>Molecular Chaperones</term>
<term>Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Cytosol</term>
<term>Disulfure de glutathion</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Membranes mitochondriales</term>
<term>Metalloproteases</term>
<term>Mitochondries</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport de la membrane mitochondriale</term>
<term>Saccharomyces cerevisiae</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Immunoblotting</term>
<term>Kinetics</term>
<term>Mitochondrial Proteins</term>
<term>Mutation</term>
<term>Oxidation-Reduction</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Immunotransfert</term>
<term>Mutation</term>
<term>Oxydoréduction</term>
<term>Protéines mitochondriales</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The mitochondrial intermembrane space (IMS) harbors an oxidizing machinery that drives import and folding of small cysteine-containing proteins without targeting signals. The main component of this pathway is the oxidoreductase Mia40, which introduces disulfides into its substrates. We recently showed that the IMS glutathione pool is maintained as reducing as that of the cytosol. It thus remained unclear how equilibration of protein disulfides with the IMS glutathione pool is prevented in order to allow oxidation-driven protein import. Here we demonstrate the presence of glutaredoxins in the IMS and show that limiting amounts of these glutaredoxins provide a kinetic barrier to prevent the thermodynamically feasible reduction of Mia40 substrates by the IMS glutathione pool. Moreover, they allow Mia40 to exist in a predominantly oxidized state. Consequently, overexpression of glutaredoxin 2 in the IMS results in a more reduced Mia40 redox state and a delay in oxidative folding and mitochondrial import of different Mia40 substrates. Our findings thus indicate that carefully balanced glutaredoxin amounts in the IMS ensure efficient oxidative folding in the reducing environment of this compartment. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25392302</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space.</ArticleTitle>
<Pagination>
<MedlinePgn>195-204</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E14-10-1422</ELocationID>
<Abstract>
<AbstractText>The mitochondrial intermembrane space (IMS) harbors an oxidizing machinery that drives import and folding of small cysteine-containing proteins without targeting signals. The main component of this pathway is the oxidoreductase Mia40, which introduces disulfides into its substrates. We recently showed that the IMS glutathione pool is maintained as reducing as that of the cytosol. It thus remained unclear how equilibration of protein disulfides with the IMS glutathione pool is prevented in order to allow oxidation-driven protein import. Here we demonstrate the presence of glutaredoxins in the IMS and show that limiting amounts of these glutaredoxins provide a kinetic barrier to prevent the thermodynamically feasible reduction of Mia40 substrates by the IMS glutathione pool. Moreover, they allow Mia40 to exist in a predominantly oxidized state. Consequently, overexpression of glutaredoxin 2 in the IMS results in a more reduced Mia40 redox state and a delay in oxidative folding and mitochondrial import of different Mia40 substrates. Our findings thus indicate that carefully balanced glutaredoxin amounts in the IMS ensure efficient oxidative folding in the reducing environment of this compartment. </AbstractText>
<CopyrightInformation>© 2015 Kojer et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kojer</LastName>
<ForeName>Kerstin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peleh</LastName>
<ForeName>Valentina</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Calabrese</LastName>
<ForeName>Gaetano</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Herrmann</LastName>
<ForeName>Johannes M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riemer</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany jan.riemer@biologie.uni-kl.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C491960">CCS1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C527885">Grx2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C495320">MIA40 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033681">Mitochondrial Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="C519195">ATP23 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D045726">Metalloproteases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015151" MajorTopicYN="N">Immunoblotting</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045726" MajorTopicYN="N">Metalloproteases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033681" MajorTopicYN="N">Mitochondrial Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051336" MajorTopicYN="N">Mitochondrial Membranes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018832" MajorTopicYN="N">Molecular Chaperones</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25392302</ArticleId>
<ArticleId IdType="pii">mbc.E14-10-1422</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E14-10-1422</ArticleId>
<ArticleId IdType="pmc">PMC4294668</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 2000 Jun;36(5):1167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10844700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2014 Jan 13;28(1):30-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24360785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Apr 21;23(8):1709-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15057279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 May 21;279(21):22284-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14985369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2004 Aug 2;166(3):337-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15277542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Apr 30;274(18):12213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10212186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 31;279(53):55341-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Dec;33(Pt 6):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2006 Mar;7(3):271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16607396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2006 Sep;89(2-3):127-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Apr 20;129(2):333-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17448992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Nov;9(11):2027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17845131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Jan;10(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17939758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Apr;1783(4):530-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18342631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jun;5(6):553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 24;283(43):29126-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18708636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Nov 19;27(22):2988-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Nov 28;135(5):933-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19026441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 5;324(5932):1284-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19498160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Feb 17;48(6):1410-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19166312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2009 Nov;146(5):599-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19720617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Apr;1804(4):839-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20036764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Feb 26;37(4):516-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20188670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 18;285(25):19022-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20404317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Jul 1;123(Pt 13):2342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20530571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2010 Oct 6;29(19):3318-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2011 Mar 15;124(Pt 6):847-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 May 18;30(10):2044-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):49-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20849374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2011 Jul 15;124(Pt 14):2349-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21693587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2011 Sep;36(9):485-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21778060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Oct;22(20):3749-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21865594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Dec 1;51(11):1943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 2;286(48):41893-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21976664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Apr 15;16(8):772-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22142307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2012 Mar 19;196(6):713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22412017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 May 15;16(10):1119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22229892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Jul;1823(7):1142-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22579494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Jul 18;31(14):3169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22705944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2012 Oct;13(10):916-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22878414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Oct;23(20):3957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22918950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Nov 14;31(22):4348-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22990235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Dec;11(12):1840-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22984289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 May 1;18(13):1597-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23198688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 May 1;18(13):1699-711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23198979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Apr 1;126(Pt 7):1604-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23424194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jul 1;19(1):54-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22901034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2013 Jun 20;20(6):747-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23790485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Jul;24(14):2160-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23676665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 Jun 15;364(Pt 3):617-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11958675</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Rhénanie-Palatinat</li>
</region>
<settlement>
<li>Kaiserslautern</li>
</settlement>
<orgName>
<li>Université technique de Kaiserslautern</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Rhénanie-Palatinat">
<name sortKey="Kojer, Kerstin" sort="Kojer, Kerstin" uniqKey="Kojer K" first="Kerstin" last="Kojer">Kerstin Kojer</name>
</region>
<name sortKey="Calabrese, Gaetano" sort="Calabrese, Gaetano" uniqKey="Calabrese G" first="Gaetano" last="Calabrese">Gaetano Calabrese</name>
<name sortKey="Herrmann, Johannes M" sort="Herrmann, Johannes M" uniqKey="Herrmann J" first="Johannes M" last="Herrmann">Johannes M. Herrmann</name>
<name sortKey="Peleh, Valentina" sort="Peleh, Valentina" uniqKey="Peleh V" first="Valentina" last="Peleh">Valentina Peleh</name>
<name sortKey="Riemer, Jan" sort="Riemer, Jan" uniqKey="Riemer J" first="Jan" last="Riemer">Jan Riemer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000539 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000539 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25392302
   |texte=   Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25392302" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020